DIRECT POTABLE REUSE: THE TIME IS NOW

III Conferencia Panamericana de Sistemas de Humedales para el Tratamiento y Mejoramiento de la Calidad del Agua Santa Fe, Argentina May 16-18, 2016

George Tchobanoglous

Professor Emeritus Department of Civil and Environmental Engineering University of California, Davis **DISCUSSION TOPICS**

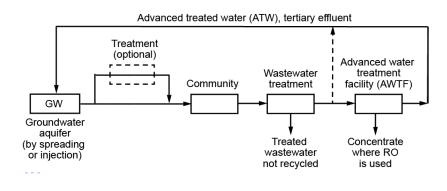
What is direct potable reuse Key elements of a DPR program Information sources for DPR A historical perspective Some issues that may impact IPR and DPR Trends in advanced treatment technologies A case study in DPR The future

WHAT IS POTABLE REUSE?

- What are the different types of potable reuse?
 - ✓ *de facto* indirect potable reuse (*df*-IPR)
 - ✓ Indirect potable reuse (IPR)
 - ✓ Direct potable reuse (DPR)
- Technologies for IPR and DPR?
- What are the cost and energy implications?
- What are the driving forces for IPR and DPR
- Where does potable reuse fit in the water portfolio

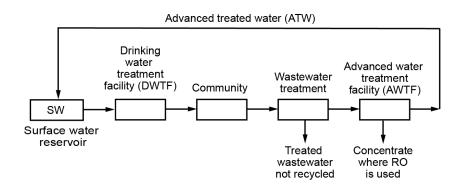
OVERVIEW: DE FACTO INDIRECT POTABLE REUSE

The downstream use of surface water as a source of drinking water that is subject to upstream wastewater discharges.

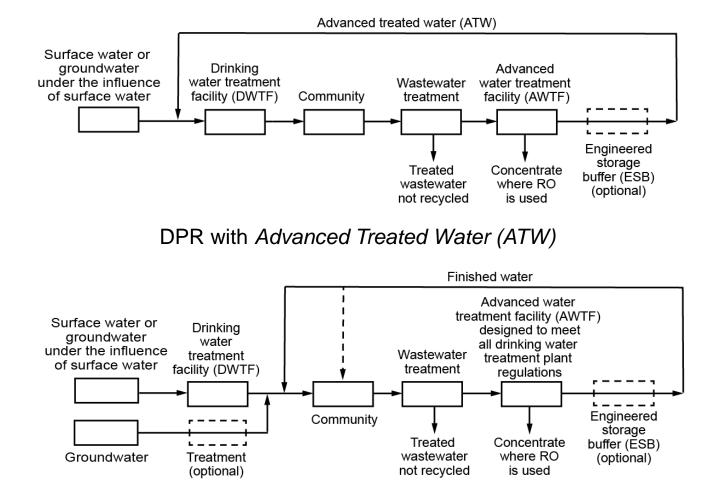


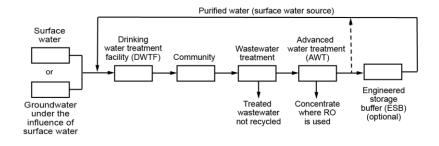
Courtesy City of San Diego

ALLEN HAZEN (1914) "CLEAN WATER AND HOW TO GET IT"

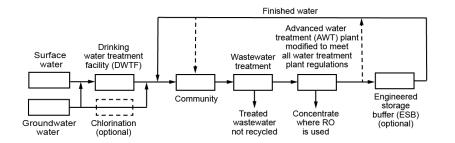

"Looking at the whole matter as one great engineering problem, it is clear and unmistakably better to purify the water supplies taken from rivers than to purify the sewage before it is discharged into them. It is very much cheaper to do it this way. The volume to be handled is less and the per million gallons the cost of purifying water is much less than the cost of purifying sewage."

OVERVIEW: INDIRECT POTABLE REUSE

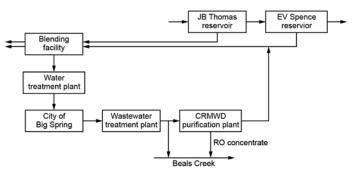

Typical injection well - OCWD

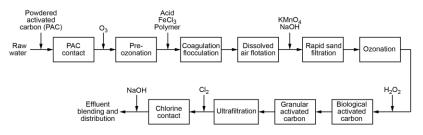

San Vicente reservoir, San Diego, CA

OVERVIEW: DIRECT POTABLE REUSE



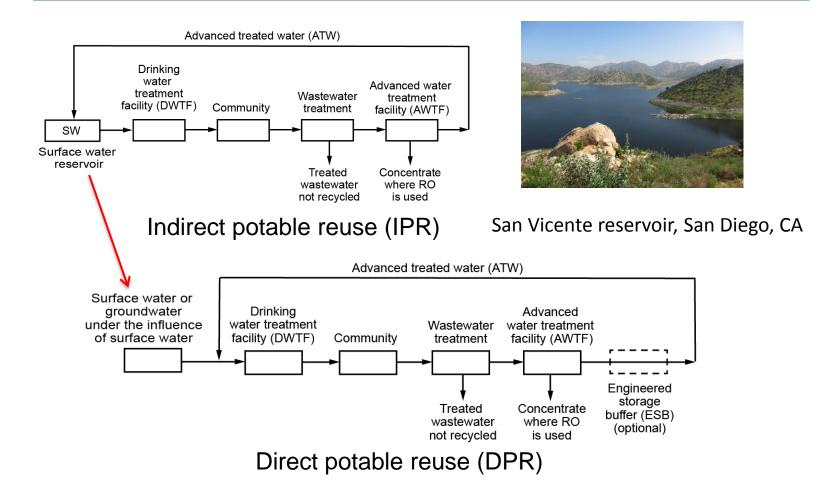
DPR with Finished Water


OVERVIEW: DIRECT POTABLE REUSE


DPR with *purified* water

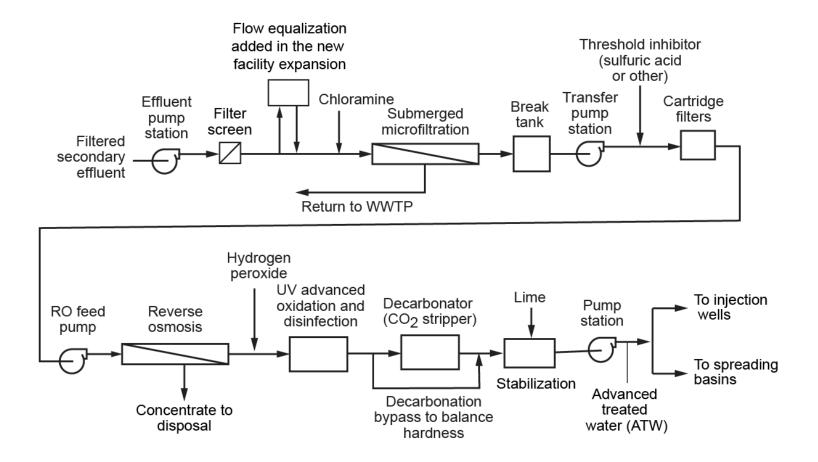
DPR with finished water

Big Spring, Texas



Windhoek, Namibia

PICTORIAL VIEW OF IPR AND DPR



INDIRECT VERSUS DIRECT POTABLE REUSE

At what point does IPR becomes DPR, as the reservoir becomes smaller

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

WHAT DOES DPR COST?

	Cost, \$/10 ³ gal (\$/AF)				
Supply option	Treatment	Residuals management	RO concentrate management	Conveyance facilities	
ATW with RO	2 10 – 2.76 (685 – 900)	0.03 - 0.15 (10 - 50)	0.21 – 2.38 (70 – 775)	0.31 – 3.07 (100 – 1,000)	
ATW without RO	1.23 – 2.15 (400 –700)	0.03 - 0.15 (10 - 50)	n.a.	0.31 – 3.07 (100 – 1,000)	
Brackish groundwater desalination (inland)	2.76 - 3.84 (900 - 1,250)	0.06 – 0.31 (20 – 100)	0.21 – 2.15 (70 – 700)	0.92 - 6.14 (300 - 2,000)	
Seawater desalination	5.52 - 6.44 (1,800 - 2,100)			1.23 – 9.21 (400 – 3,000)	
Retail cost of treated imported surface water	1.23 – (400 – 1		n.a.	0.31 – 1.84 (100 – 600)	
Water use efficiency, conservation, and use restrictions		1.38 – 2.92 (450 – 950)			

Note: \$/10³ gal x 325.89 = \$/AF

DPR ENERGY USAGE

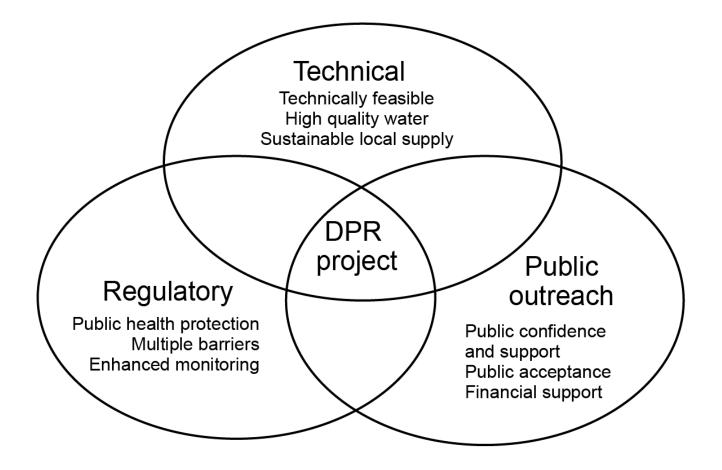
	Er	Carbon		
	Range,	Турі	footprint	
Technology/water source	kWh/10 ³ gal	kWh/103 gal	kWh/m ³	kg CO _{2e} /10 ³ gal
Secondary treatment without nutrient removal	1.35 – 1.05	1.25	0.33	0.63
Tertiary treatment with nutrient removal effluent filtration	1.95 – 1.60	1.85	0.49	0.93
Advanced water treatment	3.25 – 3.50	3.30	0.87	1.65
Ocean desalination	9.50 – 14.75	12.00	3.17	6.00
Brackish water desalination	3.10 – 6.20	5.85	1.55	2.93
Interbasin transfer of water, California State Water Project	7.92 – 9.92	9.20	2.43	4.60
Interbasin transfer of water, Colorado River water	6.15 - 7.40	6.15	1.62	3.07
Conventional water treatment	0.30 - 0.40	0.37	0.10	0.19
Membrane-based water treatment	1.00 -1.50	1.25	0.33	0.63

Note: $kWh/10^3$ gal x 325.89 = kWh/AF

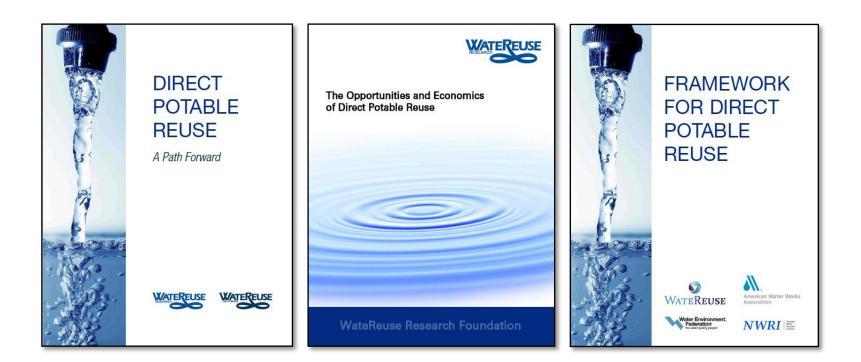
DRIVING FORCES FOR IPR AND DPR

- The value of water will increase significantly in the future (and dramatically in some locations)
- De facto indirect potable reuse is largely unregulated (e.g., secondary effluent, ag runoff, urban stormwater, highway runoff, etc.)
- Population growth and global warming will lead to severe water shortages in many locations. A reliable alternative supply should be developed
- Existing and new technologies can meet the water quality challenge
- Infrastructure requirements limit reuse opportunities
- Stringent environmental regulations

WHERE DOES POTABLE REUSE FIT IN THE WATER PORTFOLIO?


WATER SOURCES

- Local surface water
- Local groundwater
- Imported water
- Potable reuse (DPR and IPR)
- Desalination (brackish and sea water)
- Stormwater (?)


OTHER MEASURES

- Centralized non-potable reuse (e.g., purple pipe)
- Decentralized non-potable reuse (e.g., greywater)
- Conservation and curtailments

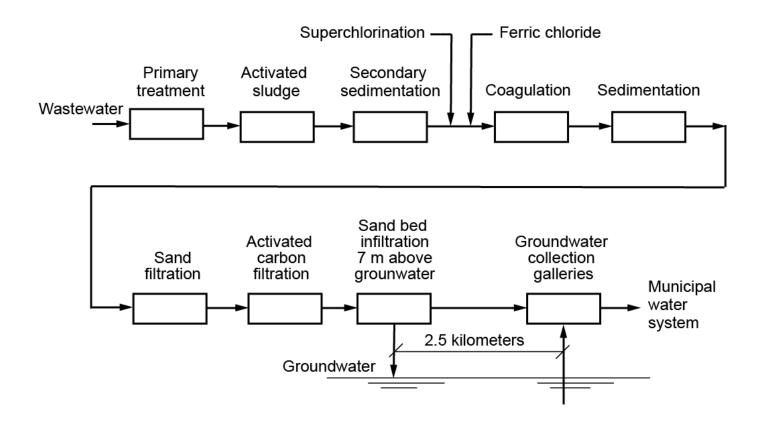
KEY COMPONENTS OF A DPR PROGRAM: TECHNICAL, REGULATORY, AND PUBLIC OUTREACH

SOME USEFUL INFORMATION SOURCES FOR DPR

To provide an overview of the key elements that make up a DPR program and a framework for assessing the specific topics and issues that need to be addressed in the development of a DPR program and future DPR Guidelines.

*Available at WateReuse and NWRI web sites

A HISTORICAL PERSPECTIVE: "RECLAMATION OF TREATED SEWAGE" TALK GIVEN BY R. F. GOUDEY* ON October 30, 1930

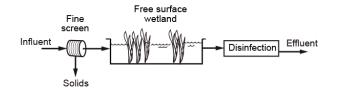

"Reclamation of sewage in Southern California, is coming whether we like it or not. It is not a. question of sewage disposal, but one directly related to a legitimate increase in water supply."

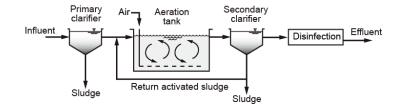
*Sanitary Engineer, Department of Water and Power, Los Angeles, CA. Formally, with the Bureau of Sanitary Engineering, Department of Public Health.

R. F. GOUDEY (October 30, 1930) RECLAMATION OF TREATED SEWAGE

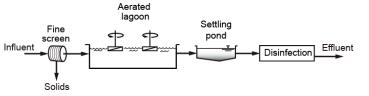
"California likewise need have no fear of eastern criticism, for it is in the east where one finds the most primitive methods of reclamation being practiced with no thought of their being questionable or repulsive. What else is it than reclamation where city after city discharges crude sewage into streams used by cities below for water supply intakes. But it is uncontrolled and unreliable reclamation."

GOUDEY'S TREATMENT SYSTEM

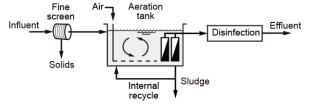



Politicians noted that Los Angeles would have to drink sewage if the bond issue to bring Colorado River water to Los Angeles did not pass

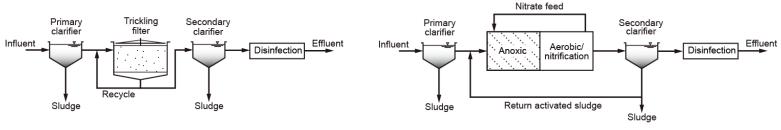
ISSUES THAT MAY IMPACT DPR AND IPR


- Suitability of typical wastewater treatment process
- Impact of climate change (discussed previously)
- Impact of conservation

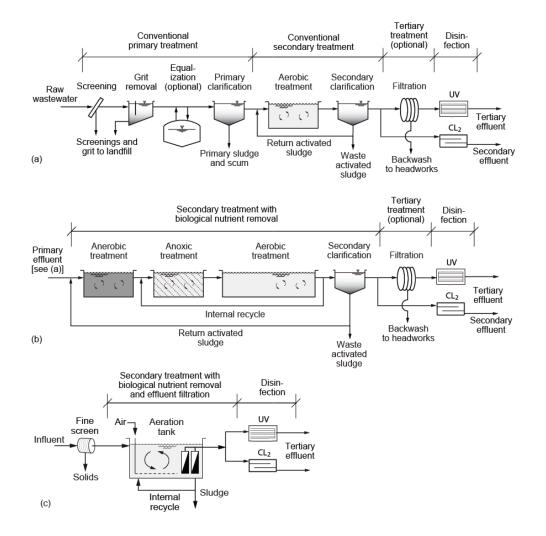
NOT ALL WASTEWATER EFFLUENTS ARE CREATED EQUAL



Free Suface Wetland

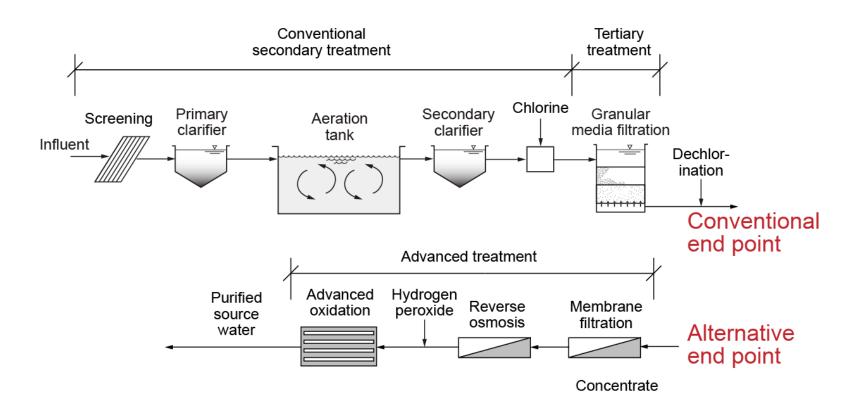


Conventional Activated Sludge


Membrane Bioreactor Activated Sludge

Tricklig Filter

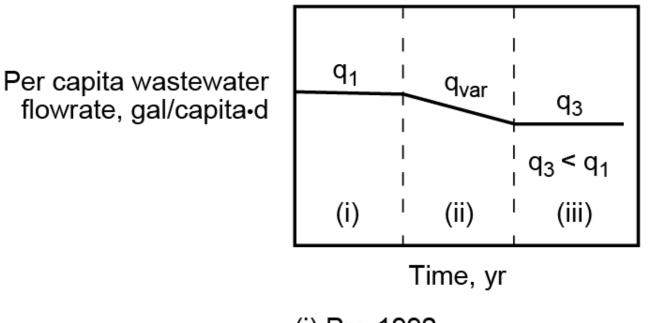
Preanoxic Nitrogen Removal


ARE ALL SECONDARY WASTEWATER TREATMENT PROCESSES SUITABLE FOR DPR?

DIFFERENCES IN EFFLUENT QUALITY BETWEEN ACCEPTED SECONDARY TREATMENT PROCESSES

			Range of effluent quality after indicated treatment				
Constituent	Unit	Untreated wastewater	Conventional activated sludge	Conventional activated sludge with filtration	Activated sludge with BNR	Activated sludge with BNR and filtration	Membrane bioreactor
Total suspended solids (TSS)	mg/L	130 – 389	5 – 25	2 – 8	5 – 20	1 – 4	<1 – 5
Turbidity	NTU	80 – 150	2 –15	1 –5	1 – 5	1 – 5	<1 – 2
Biochemical oxygen demand (BOD)	mg/L	133 – 400	5 – 25	< 5 – 20	5 – 15	1 – 5	<1 – 5
Chemical oxygen demand (COD)	mg/L	339 – 1016	40 - 80	30 – 70	20 – 40	20 – 30	<10 – 30
Total organic carbon (TOC)	mg/L	109 – 328	20 – 40	15 – 30	10 – 20	1 – 5	<0.5 – 5
Ammonia nitrogen	mg N/L	14 – 41	1 – 10	1 – 6	1 – 3	1 – 2	<1 – 5
Nitrate nitrogen	mg N/L	0 - trace	5 – 30	5 – 30	<2 - 8	1 - 8	<8
Nitrite nitrogen	mg N/L	0 - trace	0 – trace	0 – trace	0 – trace	0.001 – 0.1	0 – trace
Total nitrogen	mg N/L	23 – 69	15 – 35	15 – 35	3 – 8	2 – 5	<10
Total phosphorus	mg P/L	3.7 – 11	3 – 10	3 – 8	1 – 2	≤2	<0.3 – 5
Volatile organic compounds (VOCs)	µg/L	<100 ->400	10 – 40	10 – 40	10 – 20	10 – 20	10 – 20
Iron and manganese	mg/L	1 – 2.5	1 – 1.5	1 – 1.4	1 – 1.5	1 – 1.5	trace
Surfactants	mg/L	4 – 10	0.5 – 2	0.5 – 1.5	0.1 – 1	0.1 – 1	0.1 – 0.5
Totals dissolved solids (TDS)	mg/L	374 – 1121	374 – 1121	374 – 1121	374 – 1121	374 – 1121	374 – 1121
Trace constituents	µg/L	10 – 50	5 – 40	5 – 30	5 – 30	5 – 30	0.5 – 20
Total coliform	No./100 mL	10 ⁶ - 10 ¹⁰	10 ⁴ – 10 ⁵	10³ − 10⁵	10 ⁴ - 10 ⁵	10 ⁴ − 10 ⁵	<100
Protozoan cysts and oocysts	No./100 mL	10¹ – 10⁵	10 ¹ – 10 ²	0 –10	0 –10	0 – 1	0 – 1
Viruses	PFU/100 mL	10 ¹ - 10 ⁸	10 ¹ - 10 ⁴	10 ¹ – 10 ³	10 ¹ – 10 ³	10 ¹ – 10 ³	10º - 10³

DESIGN OF BIOLOGICAL TREATMENT PROCESS FOR ALTERNATIVE END POINT


Must think differently about secondary treatment

MEASURES TO IMPROVE PERFORMANCE AND ENHANCE RELIABILITY OF EXISTING WWTPs

Measure	Value of each measure ^a		
Enhanced screening process and possibly fine screening (2 to 6 mm)	Efficiency, reliability		
Influent flow and load equalization	Efficiency, water quality, reliability		
Elimination (or equalization) of untreated return flows	Water quality, reliability		
Operational mode for biological treatment process	Water quality, reliability		
Effluent filtration and disinfection	Water quality, reliability		
Improved process monitoring	Water quality, reliability		

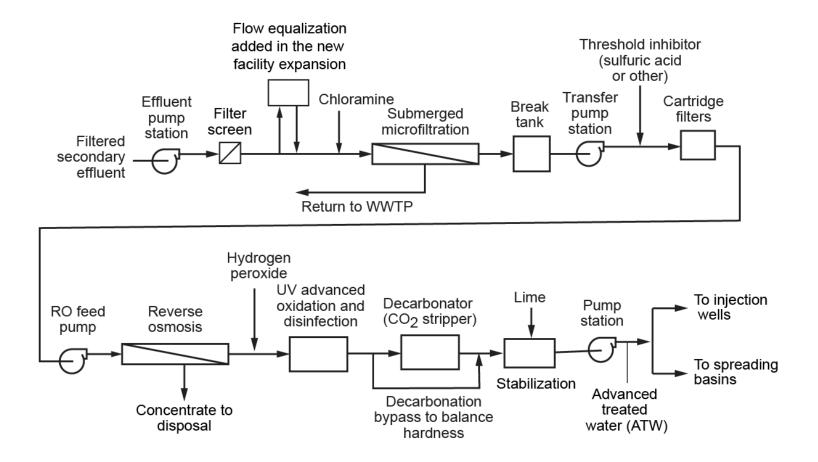
^aEfficiency – increases the overall cost efficiency of operation. Water quality – increases the final potable water quality. *Reliability* – increases the overall stability and performance of the treatment train.

IMPACT OF CONSERVATION ON OPERATION OF COLLECTION SYSTEMS, WWTPS, AND POTABLE REUSE

- (i) Pre-1992
- (ii) Improved water conservation
- (iii) Maximum water conservation

CURRENT AND PROJECTED PER CAPITA WATER USE IN THE UNITED STATES

	Flow, gal/capita•d					
	2013		2020		2030	
Use	Range	Typical	Range	Typical	Range	Typical
Domestic						
Indoor use	40 - 80	60	35 - 65	55	30 - 60	45
Outdoor use	16 - 50	35	16 - 50	35	16 - 50	35
Commercial	10 - 75	40	10 - 70	35	10 - 65	30
Public	15 - 25	20	15 - 25	18	15 - 25	15
Loss and waste	15 - 25	20	15 - 25	18	15 - 25	15
Total	96 - 255	175		161		138


84 gal/capita•d in Bay Area to 584 gal/capita•d Northern San Diego

TRENDS IN ADVANCED TREATMENT TECHNOLOGIES

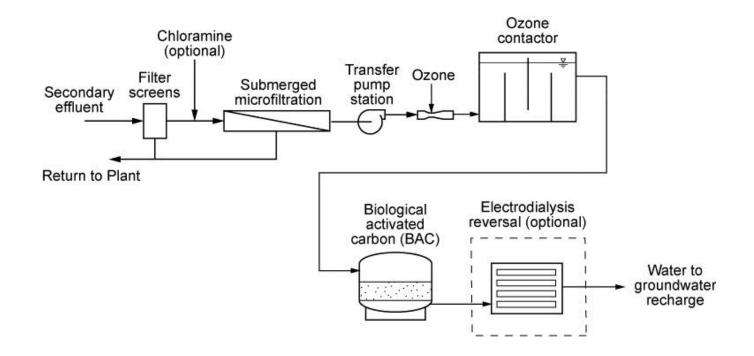
LOG-REDUCTION VALUES FOR DPR

Microbial Group	Criterion (log ₁₀ reduction)	Possible surrogates	Source used to develop criteria
Enteric virus	12	MS2 bacteriophage	SWTR (U.S. EPA, 1989a); CDPH (2011); NRC (2012); NRMMC–EPHC–NHMRC (2008)
Cryptosporidium spp.	10	Latex microspheres, AC Fine Dust, inactivated <i>Cryptosporidium</i> oocysts, aerobic spores	Interim ESWTR (U.S. EPA, 1998); LT2 ESWTR (U.S. EPA, 2006); CDPH (2011); NRC (2012); NRMMC–EPHC– NHMRC (2008)
Total coliform bacteria	9	NA°	Total Coliform Rule (U.S. EPA, 1989b); NRC (2012) risk assessment for salmonella

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Microfiltration, Cartridge Filters, Reverse Osmosis, and Advanced Oxidation (UV) Technologies at OCWD

ONGOING RESEARCH AT OCWD TESTING OF NEW MEMBRANE MODULES


Decarbonator (CO₂ Stripping)

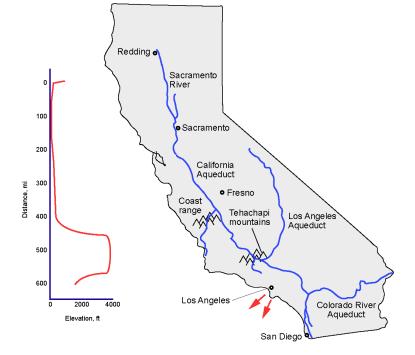
ORANGE COUNTY WATER DISTRICT, OCWD

Lime Saturator (pH adjustment)

TECHNOLOGIES FOR THE REMOVAL OF TRACE CONSTITUENTS AND UNKNOWNS

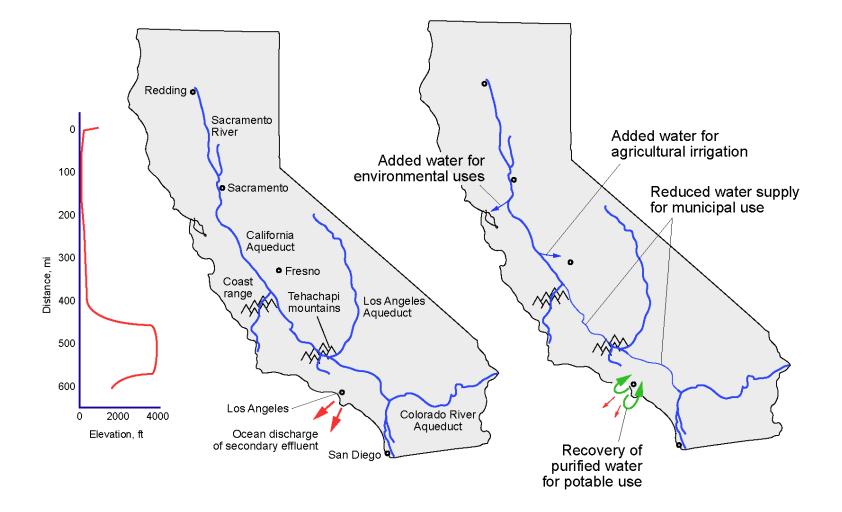
COMPARISON OF TECHNOLOGIES FOR THE REMOVAL OF TRACE CONSTITUENTS & UNKNOWNS

Item	MF-Ozone-BAC	MF-RO-UV/Peroxide
Fate of trace organics	Degraded	Removed and degraded
Reject/side streams	Minor (periodic backwash water)	Major (up to 20%)
Salinity	Unchanged	Decreased significantly
Corrosivity	Unchanged	Increased (requires buffering)
Energy consumption without MF	0.03 - 1.0 kWh/m ³	8 - 10 kWh/m ³

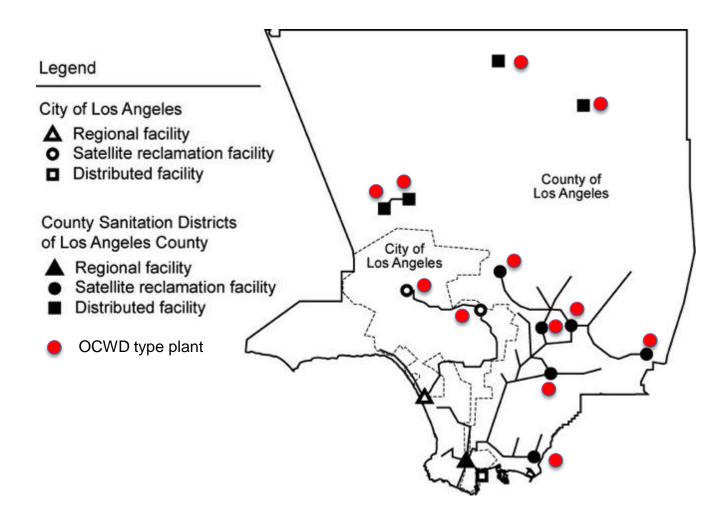

Adapted from Sundaram et al., 2009

MANAGEMENT OPTIONS FOR RO CONCENTRATE

- 1. Surface water discharge
- 2. Discharge to wastewater collection system
- 3. Deep-well injection
- 4. Evaporation ponds (without and with greenhouse)
- 5. Land application
- 6. Zero liquid discharge (ZLD)
- 7. RO concentrate discharged through existing wastewater effluent ocean outfall
- 8. RO concentrate discharged through separate ocean outfall


A DPR CASE STUDY: SOUTHERN CALIFORNIA

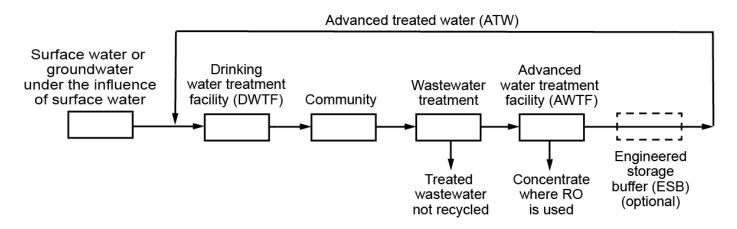
Electric Power Consumption for Urban Water Systems in Northern and Southern CA



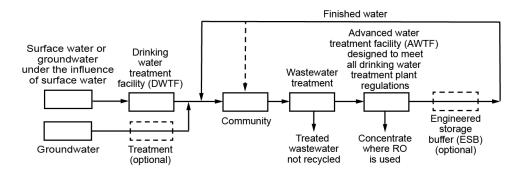
System -	Power consumption, kWh/Mgal	
	Northern California	Southern California
Supply and conveyance	150	8,900
Water treatment	100	100
Distribution	1200	1200
Wastewater treatment	2,500	2,500
TOTAL	3,950	12,700

Opportunities for the Future: The Southern California Example

Wastewater Management Infrastructure -Potential Locations for Water Plants



BENEFITS OF SOUTHERN CALIFORNIA EXAMPLE


- Reliable alternative source of supply, more secure from natural disasters
- Lower cost and reduced energy usage
- More water available for agricultural and other uses, especially during drought periods
- Environmental benefits for bay delta habitat restoration

- Let's move ahead with DPR now
- Needs identified in framework document to enhance the implementation of DPR
 - ✓ Regulatory
 - ✓ Technology
 - Public outreach
- Wastewater management in the 21st Century

LETS MOVE AHEAD WITH DPR

Focus on DPR with advanced treated water (ATW)

Continue to work on DPR with finished water

- National guidelines and regulations
- National framework for integrating the CWA and SDWA for permitting DPR projects
- Consideration of advanced treated water (ATW) as a third water source (i.e., surface water, groundwater, and ATW)
- Development of consistent training programs
- Operator training and certification?

FUTURE TECHNOLOGY NEEDS

- Better understanding of treatment processes
 to reduce overly conservative designs
- Improved understanding of relationship between multiple barriers
- Improved monitoring methods to capture failure and other events of interest
- Full-scale demonstration of advanced water treatment facility without reverse osmosis
- Development of technologies for satellite and decentralized AWTFs

FUTURE PUBLIC OUTREACH

- We already have a lot of tools
- Develop appropriate and consistent terminology
- Clear message about potable reusewhat it is and what it is not.

CLOSING THOUGHTS

Ultimately, implementation of DPR and/or IPR is inevitable in urban and other areas, and will represent an essential element of a sustainable water future

- Must think of wastewater differently
- Technology is not an issue
- The public is supportive
- To make it a reality, bold new planning must begin now!!

THE FUTURE OF DPR AND IPR

Rather than regulations driving wastewater management as in the past, **THE VALUE OF POTABLE WATER, RESOURCES, and ENERGY** will propel developments in the 21st century. THANK YOU FOR LISTENING